Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Given a swarm of limited-capability robots, we seek to automatically discover the set of possible emergent behaviors. Prior approaches to behavior discovery rely on human feedback or hand-crafted behavior metrics to represent and evolve behaviors and only discover behaviors in simulation, without testing or considering the deployment of these new behaviors on real robot swarms. In this work, we present Real2Sim2Real Behavior Discovery via Self-Supervised Representation Learning, which combines representation learning and novelty search to discover possible emergent behaviors automatically in simulation and enable direct controller transfer to real robots. First, we evaluate our method in simulation and show that our proposed self-supervised representation learning approach outperforms previous hand-crafted metrics by more accurately representing the space of possible emergent behaviors. Then, we address the reality gap by incorporating recent work in sim2real transfer for swarms into our lightweight simulator design, enabling direct robot deployment of all behaviors discovered in simulation on an open-source and low-cost robot platform.more » « lessFree, publicly-accessible full text available June 5, 2026
-
A fundamental challenge of shared autonomy is to use high-DoF robots to assist, rather than hinder, humans by first inferring user intent and then empowering the user to achieve their intent. Although successful, prior methods either rely heavily on a priori knowledge of all possible human intents or require many demonstrations and interactions with the human to learn these intents before being able to assist the user. We propose and study a zero-shot, vision-only shared autonomy (VOSA) framework designed to allow robots to use end-effector vision to estimate zero-shot human intents in conjunction with blended control to help humans accomplish manipulation tasks with unknown and dynamically changing object locations. To demonstrate the effectiveness of our VOSA framework, we instantiate a simple version of VOSA on a Kinova Gen3 manipulator and evaluate our system by conducting a user study on three tabletop manipulation tasks. The performance of VOSA matches that of an oracle baseline model that receives privileged knowledge of possible human intents while also requiring significantly less effort than unassisted teleoperation. In more realistic settings, where the set of possible human intents is fully or partially unknown, we demonstrate that VOSA requires less human effort and time than baseline approaches while being preferred by a majority of the participants. Our results demonstrate the efficacy and efficiency of using off-the-shelf vision algorithms to enable flexible and beneficial shared control of a robot manipulator. Code and videos available here: https://sites.google.com/view/zeroshot-sharedautonomy/homemore » « lessFree, publicly-accessible full text available March 4, 2026
-
We study the problem of cross-embodiment inverse reinforcement learning, where we wish to learn a reward function from video demonstrations in one or more embodiments and then transfer the learned reward to a different embodiment (e.g., different action space, dynamics, size, shape, etc.). Learning reward functions that transfer across embodiments is important in settings such as teaching a robot a policy via human video demonstrations or teaching a robot to imitate a policy from another robot with a different embodiment. However, prior work has only focused on cases where near-optimal demonstrations are available, which is often difficult to ensure. By contrast, we study the setting of cross-embodiment reward learning from mixed-quality demonstrations. We demonstrate that prior work struggles to learn generalizable reward representations when learning from mixed-quality data. We then analyze several techniques that leverage human feedback for representation learning and alignment to enable effective cross-embodiment learning. Our results give insight into how different representation learning techniques lead to qualitatively different reward shaping behaviors and the importance of human feedback when learning from mixed-quality, mixed-embodiment data.more » « less
An official website of the United States government

Full Text Available